2 research outputs found

    A Generic System for Automotive Software Over the Air (SOTA) Updates Allowing Efficient Variant and Release Management

    Get PDF
    The introduction of Software Over The Air (SOTA) Updates in the automotive industry offers both the Original Equipment Manufacturer and the driver many advantages such as cost savings through inexpensive over the air bug fixes. Furthermore, it enables enhancing the capabilities of future vehicles throughout their life-cycle. However, before making SOTA a reality for safety-critical automotive functions, major challenges must be deeply studied and resolved: namely the related security risks and the required high system safety. The security concerns are primarily related to the attack and manipulation threats of wireless connected and update-capable cars. The functional safety requirements must be fulfilled despite the agility needed by some software updates and the typically high variants numbers. We studied the state of the art and developed a generic SOTA updates system based on a Server-Client architecture and covering main security and safety aspects including a rollback capability. The proposed system offers release and variant management, which is the main novelty of this work. The proof of concept implementation with a server running on a host PC and an exemplary Electric/Electronic network showed the feasibility and the benefits of SOTA updates

    Lifecycle Management of Automotive Safety-Critical Over the Air Updates: A Systems Approach

    Get PDF
    With the increasing importance of Over The Air (OTA) updates in the automotive field, maintaining safety standards becomes more challenging as frequent incremental changes of embedded software are regularly integrated into a wide range of vehicle variants. This necessitates new processes and methodologies with a holistic view on the backend, where the updates are developed and released
    corecore